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A MINIMUM ENTROPY PRINCIPLE IN THE COMPRESSIBLE
MULTICOMPONENT EULER EQUATIONS

Ayoub Gouasmi1,*, Karthik Duraisamy1, Scott M. Murman2 and Eitan Tadmor3

Abstract. In this work, the space of admissible entropy functions for the compressible multicomponent
Euler equations is explored, following up on Harten (J. Comput. Phys. 49 (1983) 151–164). This effort
allows us to prove a minimum entropy principle on entropy solutions, whether smooth or discrete, in
the same way it was originally demonstrated for the compressible Euler equations by Tadmor (Appl.
Numer. Math. 49 (1986) 211–219).
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1. Introduction

Some hyperbolic systems of conservation laws,

𝜕𝑡u + 𝜕𝑥f = 0, (1.1)

where u(𝑥, 𝑡) and f(u(𝑥, 𝑡)) are the state and flux vectors, respectively, admit a convex extension [4, 16] in the
sense that equation (1.1) implies an additional conservation equation:

𝜕𝑡𝑈 + 𝜕𝑥𝐹 = 0, (1.2)

where (𝑈, 𝐹 ) = (𝑈(u), 𝐹 (u)) ∈ R2 is an entropy–entropy flux pair satisfying:

𝜕𝑈

𝜕u
𝜕f
𝜕u

=
𝜕𝐹

𝜕u
(1.3)

and 𝑈 strictly convex. We refer to 𝑈 as an entropy function. Equation (1.3) is a necessary and sufficient condition
for (1.1) to imply (1.2). Additionally, Mock [23] showed that the mapping u → v with the vector of entropy
variables v defined as:

v :=
(︂

𝜕𝑈

𝜕u

)︂⊤
, (1.4)

is one-to-one and turns (1.1) into a symmetric hyperbolic system [4,19].
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It is well known that when the flux f is nonlinear, discontinuous solutions to equation (1.1) can develop
from smooth initial conditions. Weak solutions must therefore be sought. Unfortunately, weak solutions are
not uniquely defined and one needs additional conditions to distinguish physical solutions from non-physical
ones. It is common practice to view physical solutions as those arising as vanishing viscosity limits, u(𝑥, 𝑡) =
lim𝜖→0 u𝜖(𝑥, 𝑡), of solutions u𝜖(𝑥, 𝑡) to the regularized system:

𝜕𝑡u𝜖 + 𝜕𝑥f(u𝜖) = 𝜖𝜕2
𝑥u

𝜖, 𝜖 > 0. (1.5)

Multiplying (1.5) on the left by v⊤ and using the convexity of 𝑈 one can show that u𝜖 satisfies the inequality:

𝜕𝑡𝑈(u𝜖) + 𝜕𝑥𝐹 (u𝜖) ≤ 𝜖𝜕2
𝑥𝑈(u𝜖). (1.6)

In the limit 𝜖 → 0, this leads to the well-known entropy condition [19,21]:

𝜕𝑡𝑈(u) + 𝜕𝑥𝐹 (u) ≤ 0, (1.7)

which is understood in the sense of distributions. Weak solutions to (1.1) which satisfy the entropy condition
(1.7) for all entropies are called entropy solutions.

For the compressible Euler equations governing the inviscid polytropic gas dynamics, Tadmor [26] showed
that entropy solutions, whether smooth or discrete, satisfy a minimum entropy principle, namely that the spatial
minimum of the specific entropy is an increasing function of time.

In this work, we seek to extend this result to entropy solutions of the multicomponent compressible Euler
equations. In Section 2, we review the system at hand. In Section 3, we recall the original proof and motivate the
two families of entropy function we investigate in Section 4. We end up showing a minimum entropy principle
for the mixture’s specific entropy. In Section 5, we review numerical schemes which satisfy this property.

2. Governing equations

We consider the compressible multicomponent Euler equations [6] which consist of the conservation of species
mass, momentum and total energy. In one dimension, that is equation (1.1) with the state vector u and flux
vector f defined by:

u :=
[︀
𝜌1 . . . 𝜌𝑁 𝜌𝑢 𝜌𝑒 + 1

2𝜌𝑢2
]︀⊤

, f :=
[︀
𝜌1𝑢 . . . 𝜌𝑁𝑢 𝜌𝑢2 + 𝑝 (𝜌𝑒 + 1

2𝜌𝑢2 + 𝑝)𝑢
]︀⊤

,

where 𝜌𝑘 is the partial density of species 𝑘, 𝜌 :=
∑︀𝑁

𝑘=1 𝜌𝑘 is the total density and 𝑢 is the fluid velocity. The
pressure 𝑝 is given by the perfect gas law:

𝑝 :=
𝑁∑︁

𝑘=1

𝜌𝑘𝑟𝑘𝑇, 𝑟𝑘 =
𝑅

𝑚𝑘
,

where 𝑚𝑘 is the molar mass of species 𝑘 and 𝑅 is the gas constant. The temperature 𝑇 is determined by the
internal energy 𝜌𝑒 which in this work is modeled following a thermally perfect gas assumption:

𝜌𝑒 :=
𝑁∑︁

𝑘=1

𝜌𝑘𝑒𝑘, 𝑒𝑘 := 𝑒0𝑘 +
∫︁ 𝑇

0

𝑐𝑣𝑘(𝜏) d𝜏.

For species 𝑘, 𝑒𝑘 is the specific internal energy of species 𝑘, 𝑒0𝑘 is a constant and 𝑐𝑣𝑘 = 𝑐𝑣𝑘(𝑇 ) > 0 is the
constant volume specific heat. Other quantities which will be used in this work are given by:

ℎ𝑘 := 𝑒𝑘 + 𝑟𝑘𝑇, 𝜌𝑐𝑣 :=
𝑁∑︁

𝑘=1

𝜌𝑘𝑐𝑣𝑘, 𝑐𝑝𝑘 := 𝑐𝑣𝑘 + 𝑟𝑘, 𝛾 :=
𝑐𝑝

𝑐𝑣
, 𝑌𝑘 :=

𝜌𝑘

𝜌
·
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ℎ𝑘 is the specific enthalpy of species 𝑘, 𝑐𝑣 is the constant volume specific heat of the gas mixture, 𝛾 is the
specific heat ratio and 𝑌𝑘 is the mass fraction of species 𝑘. The thermodynamic entropy of the mixture is given
by:

𝜌𝑠 :=
𝑁∑︁

𝑘=1

𝜌𝑘𝑠𝑘, 𝑠𝑘 :=
∫︁ 𝑇

0

𝑐𝑣𝑘(𝜏)
𝜏

d𝜏 − 𝑟𝑘 ln(𝜌𝑘).

Combining the transport equations for total density, species fractions and internal energy:

𝐷𝑡𝜌 = −𝜌𝜕𝑥𝑢, 𝐷𝑡𝑌𝑘 = 0, 𝐷𝑡𝑒 = −𝑝

𝜌
𝜕𝑥𝑢, (2.1)

with the Gibbs relation:

𝑇 d𝑠 = d𝑒− 𝑝

𝜌2
d𝜌−

𝑁∑︁
𝑘=1

𝑔𝑘 d𝑌𝑘, (2.2)

leads to a transport equation for the specific entropy 𝑠:

𝐷𝑡𝑠 = 0. (2.3)

With total mass conservation, this leads to the conservation equation:

𝜕𝑡(𝜌𝑠) + 𝜕𝑥(𝜌𝑠𝑢) = 0. (2.4)

For 𝜌𝑘 > 0, 𝑇 > 0, (𝑈, 𝐹 ) = (−𝜌𝑠,−𝜌𝑢𝑠) is a valid entropy–entropy flux pair [1, 6]. The condition (1.3) is met
as a consequence of (2.4). The convexity of 𝑈 is established by looking at the entropy Hessian G given by:

G :=
𝜕2𝑈

𝜕u2
=

𝜕v
𝜕u

=
𝜕v
𝜕𝑍

(︂
𝜕u
𝜕𝑍

)︂−1

.

The entropy variables v for the multicomponent system can be easily derived using variable changes. Define the
vector of primitive variables 𝑍 =

[︀
𝜌1 . . . 𝜌𝑁 𝑢 𝑇

]︀⊤. The chain rule gives:

𝜕𝑈

𝜕u
=

𝜕𝑈

𝜕𝑍

(︂
𝜕u
𝜕𝑍

)︂−1

.

The Gibbs identity (2.2) can be written as:

𝑇 d𝑈 = −d𝜌𝑒 +
𝑁∑︁

𝑘=1

𝑔𝑘 d𝜌𝑘, (2.5)

where 𝑔𝑘 = ℎ𝑘 − 𝑇𝑠𝑘 is the Gibbs function of species 𝑘. From the definition of 𝜌𝑒 we have:

d𝜌𝑒 =
𝑁∑︁

𝑘=1

𝑒𝑘 d𝜌𝑘 + 𝜌𝑐𝑣 d𝑇. (2.6)

Combining equations (2.6) and (2.5), one obtains:

d𝑈 =
1
𝑇

(︃
𝑁∑︁

𝑘=1

(𝑔𝑘 − 𝑒𝑘) d𝜌𝑘 − 𝜌𝑐𝑣 d𝑇

)︃
.

This gives:
𝜕𝑈

𝜕𝑍
=

1
𝑇

[︀
(𝑔1 − 𝑒1) . . . (𝑔𝑁 − 𝑒𝑁 ) 0 −𝜌𝑐𝑣

]︀
. (2.7)
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The Jacobian of the mapping 𝑍 → u is given by:

𝜕u
𝜕𝑍

=

⎡⎢⎢⎢⎢⎣
1 0 0 0

. . .
...

...
0 1 0 0
𝑢 . . . 𝑢 𝜌 0

𝑒1 + 𝑘 . . . 𝑒𝑁 + 𝑘 𝜌𝑢 𝜌𝑐𝑣

⎤⎥⎥⎥⎥⎦ , (2.8)

where 𝑘 = 1
2𝑢2. The inverse of this matrix is given by:

(︂
𝜕u
𝜕𝑍

)︂−1

=

⎡⎢⎢⎢⎢⎣
1 0 0 0

. . .
...

...
0 1 0 0

−𝑢𝜌−1 . . . −𝑢𝜌−1 𝜌−1 0
(𝑘 − 𝑒1)(𝜌𝑐𝑣)−1 . . . (𝑘 − 𝑒𝑁 )(𝜌𝑐𝑣)−1 −𝑢(𝜌𝑐𝑣)−1 (𝜌𝑐𝑣)−1

⎤⎥⎥⎥⎥⎦ . (2.9)

Combining equations (2.9) and (2.7) yields the entropy variables [1, 6]:

v =
(︂

𝜕𝑈

𝜕u

)︂⊤
=

1
𝑇

[︀
𝑔1 − 𝑘 . . . 𝑔𝑁 − 𝑘 𝑢 −1

]︀⊤
. (2.10)

We have:

𝜕v
𝜕𝑍

=

⎡⎢⎢⎢⎢⎣
𝑟1/𝜌1 0 −𝑢/𝑇 (𝑘 − 𝑒1)/𝑇 2

. . .
...

...
0 𝑟𝑁/𝜌𝑁 −𝑢/𝑇 (𝑘 − 𝑒𝑁 )/𝑇 2

0 . . . 0 1/𝑇 −𝑢/𝑇 2

0 . . . 0 0 1/𝑇 2

⎤⎥⎥⎥⎥⎦ . (2.11)

Therefore the Hessian is given by:

G =
1

𝜌𝑐𝑣𝑇 2

⎡⎢⎢⎢⎢⎣
−𝑢(𝑘 − (𝑒1 − 𝑐𝑣𝑇 )) −(𝑒1 − 𝑘)(︀

𝜁𝑖𝑗

)︀ ...
...

−𝑢(𝑘 − (𝑒𝑁 − 𝑐𝑣𝑇 )) −(𝑒𝑁 − 𝑘)
−𝑢(𝑘 − (𝑒1 − 𝑐𝑣𝑇 )) . . . −𝑢(𝑘 − (𝑒𝑁 − 𝑐𝑣𝑇 )) (𝑢2 + 𝑐𝑣𝑇 ) −𝑢

−(𝑒1 − 𝑘) . . . −(𝑒𝑁 − 𝑘) −𝑢 1

⎤⎥⎥⎥⎥⎦ , (2.12)

with 𝜁𝑖𝑗 = (𝜌𝑐𝑣𝑇 2)
(︀
𝛿𝑖𝑗𝑟𝑖/𝜌𝑖 +𝑢2𝑐𝑣𝑇

)︀
+(𝑒𝑖−𝑘)(𝑒𝑗 −𝑘) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . The positive definiteness of the Hessian

matrix G is not immediately visible because it is dense. However the matrix H defined by the congruence
relation:

H :=
(︂

𝜕u
𝜕𝑍

)︂⊤
G
(︂

𝜕u
𝜕𝑍

)︂
=
(︂

𝜕u
𝜕𝑍

)︂⊤
𝜕v
𝜕𝑍

=

⎡⎢⎢⎢⎢⎣
𝑟1/𝜌1 0 0 0

. . .
...

...
0 𝑟𝑁/𝜌𝑁 0 0
0 . . . 0 𝜌/𝑇 0
0 . . . 0 0 𝜌𝑐𝑣/𝑇 2

⎤⎥⎥⎥⎥⎦ , (2.13)

is positive definite, therefore 𝐺 is positive definite. This congruence relation, which was cleverly used in [17],
will be used as well in Section 4.

3. The minimum entropy principle

In this section, we review the proof of Tadmor [27] for the compressible Euler equations then discuss how to
apply it to the multicomponent system.
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3.1. Review

Integrating the inequality (1.7) over any domain Ω which induces no entropy influx across its boundaries
gives:

d
d𝑡

∫︁
Ω

𝑈(u(𝑥, 𝑡)) d𝑥 ≤ 0. (3.1)

Integrating the above in time gives [21]:∫︁
Ω

𝑈(u(𝑥, 𝑡)) d𝑥 ≤
∫︁

Ω

𝑈(u(𝑥, 0)) d𝑥. (3.2)

Tadmor [24] showed that a sharper, more local version of the above inequality can be obtained:∫︁
|𝑥|≤𝑅

𝑈(u(𝑥, 𝑡)) d𝑥 ≤
∫︁
|𝑥|≤𝑅+𝑡·𝑞max

𝑈(u(𝑥, 0)) d𝑥, (3.3)

where 𝑞max is the maximum velocity in the domain at 𝑡 = 0. For the Euler equations, Harten [16] sought pairs of
the form (𝑈ℎ, 𝐹ℎ) = (−𝜌ℎ(𝑠),−𝜌𝑢ℎ(𝑠)) where 𝑠 = ln(𝑝)− 𝛾 ln(𝜌) is the dimensionless specific entropy (divided
by the 𝑐𝑣, we will use the letter 𝑓 instead of ℎ in Sect. 4) and ℎ is a smooth function of 𝑆. Harten showed that
the pair (𝑈ℎ, 𝐹ℎ) is admissible if and only if ℎ satisfies:

ℎ′ − 𝛾 ℎ′′ > 0, ℎ′ > 0. (3.4)

For any such function ℎ, the inequality (3.3) with 𝑈 = 𝑈ℎ gives:∫︁
|𝑥|≤𝑅

𝜌(𝑥, 𝑡) · ℎ(𝑠(𝑥, 𝑡)) d𝑥 ≥
∫︁
|𝑥|≤𝑅+𝑡·𝑞max

𝜌(𝑥, 0) · ℎ(𝑠(𝑥, 0)) d𝑥. (3.5)

Tadmor makes a special choice ℎ0 for the function ℎ:

ℎ0(𝑠) = min[𝑠− 𝑠0, 0], 𝑠0 = Ess inf
|𝑥|≤𝑅+𝑡·𝑞max

𝑠(𝑥, 0).

𝑠0 is the essential infimum of the specific entropy in the domain Ω = {𝑥 : |𝑥| < 𝑅 + 𝑡 · 𝑞max}. From inequality
(3.5), we get: ∫︁

|𝑥|≤𝑅

𝜌(𝑥, 𝑡) ·min[𝑠(𝑥, 𝑡)− 𝑠0, 0] d𝑥 ≥
∫︁
|𝑥|≤𝑅+𝑡·𝑞max

𝜌(𝑥, 0) ·min[𝑠(𝑥, 0)− 𝑠0, 0] d𝑥. (3.6)

The right-hand side drops by definition of 𝑠0, so equation (3.6) simplifies to:∫︁
|𝑥|≤𝑅

𝜌(𝑥, 𝑡) ·min[𝑠(𝑥, 𝑡)− 𝑠0, 0] d𝑥 ≥ 0. (3.7)

The integrand on the left-hand side is negative, therefore inequality (3.7) imposes for |𝑥| ≤ 𝑅:

min[𝑠(𝑥, 𝑡)− 𝑠0, 0] = 0 ⇔ 𝑠(𝑥, 𝑡) ≥ Ess inf
|𝑥|≤𝑅+𝑡·𝑞max

𝑠(𝑥, 0). (3.8)

This is the minimum entropy principle satisfied by entropy solutions to the compressible Euler equations. A
similar result holds for discrete solutions u𝑛

𝑖 (the subscript 𝑖 and the superscript 𝑛 refer to the cell index and
time instant, respectively) which satisfy the fully-discrete entropy inequality:∑︁

𝑖

𝑈(u𝑛+1
𝑖 ) ≤

∑︁
𝑖

𝑈(u𝑛
𝑖 ), (3.9)
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for all entropies 𝑈 . Taking 𝑈 = −𝜌ℎ0(𝑠) with 𝑠0 defined as the minimum specific entropy at time instant 𝑛
leads to: ∑︁

𝑖

𝜌(u𝑛+1
𝑖 ) ·min[𝑠(u𝑛+1

𝑖 )− 𝑠0, 0] ≥ 0.

If 𝜌(u𝑛+1
𝑖 ) > 0, this imposes in every cell:

min[𝑠(u𝑛+1
𝑖 )− 𝑠0, 0] = 0 ⇔ 𝑠(u𝑛+1

𝑖 ) ≥ min
𝑖

𝑠(u𝑛
𝑖 ). (3.10)

At first glance, injecting 𝑈 = −𝜌ℎ0(𝑠) in inequalities (3.3) and (3.9) should not be allowed because ℎ0 is not
smooth function of 𝑠. What makes this step valid nonetheless is the fact that ℎ0 can be written as the limit of a
sequence of smooth functions which satisfy Harten’s conditions. Without loss of generality, let’s assume 𝑠0 = 0
and consider the convolution defined as:

ℎ(𝑠) =
∫︁ +∞

−∞
ℎ0(𝑠− 𝑠)𝜑(𝑠) d𝑠

where 𝜑 is a smooth function satisfying: ∫︁ +∞

−∞
𝜑(𝑠) d𝑠 = 1, 𝜑(𝑠) > 0.

𝜑 should also be such that the convolution is well-defined everywhere. 𝜑(𝑠) = exp(−𝑠2)/
√

𝜋 is a valid choice.
By definition of ℎ0, we have:

ℎ(𝑠) =
∫︁ +∞

𝑠

(𝑠− 𝑠)𝜑(𝑠) d𝑠 = 𝑠

∫︁ +∞

𝑠

𝜑(𝑠) d𝑠−
∫︁ +∞

𝑠

𝑠𝜑(𝑠) d𝑠.

ℎ is smooth and satisfies Harten’s conditions because:

ℎ′(𝑠) =
∫︁ +∞

𝑠

𝜑(𝑠) d𝑠 > 0, ℎ′′(𝑠) = −𝜑(𝑠) < 0.

∀𝜀 > 0, the function ℎ𝜀 defined by:

ℎ𝜀(𝑠) =
∫︁ +∞

−∞
ℎ0(𝑠− 𝑠)𝜑𝜀(𝑠) d𝑠, 𝜑𝜀(𝑠) =

1
𝜀
𝜑

(︂
𝑠

𝜀

)︂
, (3.11)

is smooth and satisifies Harten’s conditions as well. What is more, 𝜑𝜀 converges, in the sense of distributions,
to the Dirac delta function when 𝜀 → 0 (classic result). Therefore, inequality (3.6) is obtained ℎ0 = lim𝜀→ ℎ𝜀.

The main takeaway of this review is that not all entropy inequalities need to be satisfied for a minimum
entropy principle to hold in the compressible Euler equations. Those involving the “convolution entropies”
𝑈 = −𝜌ℎ𝜀(𝑠),∀𝜀 > 0 defined by equation (3.11) are enough.

Remark 3.1. This proof and Harten’s characterization (3.4) are both independent of the number of spatial
dimensions [16, 26]. Throughout this manuscript, we are working in one dimension for the sake of simplicity
only.

Remark 3.2. Kroner et al. [18] use a different approach to demonstrate that bounded entropy solutions to the
quasi-1D Euler equations with discontinuous cross-section satisfy a minimum entropy principle. The inequality
(3.5) is used with ℎ(𝑠) = −(𝑠0 − 𝑠)𝑝, 𝑝 > 1, 𝑠0 > 𝑠 (𝑠0 denotes an upper bound in this context), raised to the
power 1/𝑝 and passed to the limit 𝑝 →∞.

Remark 3.3. A minimum entropy principle for smooth solutions to well-designed regularizations of the Euler
equations was proved by Guermond and Popov [10] (see also Delchini et al. [2, 3] for other systems). In this
work, we are interested in the minimum entropy principle as a property of entropy solutions, whether smooth
or discrete, to the multicomponent compressible Euler equations.
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3.2. Elements of proof for the multicomponent compressible Euler equations

We need to formulate what a minimum entropy principle would be in the multicomponent case. The first
option is a minimum entropy principle involving the specific entropy of each species:

𝑠𝑘(𝑥, 𝑡) ≥ 𝑠0𝑘 = Ess inf
|𝑥|≤𝑅+𝑡·𝑞max

𝑠𝑘(𝑥, 0), 1 ≤ 𝑘 ≤ 𝑁.

Working Tadmor’s proof backwards, this is obtained if we can show that entropy solutions satisfy the inequality:

∫︁
|𝑥|≤𝑅

𝑁∑︁
𝑘=1

𝜌𝑘(𝑥, 𝑡) · 𝑓𝑘(𝑠𝑘(𝑥, 𝑡)) d𝑥 ≥
∫︁
|𝑥|≤𝑅+𝑡·𝑞max

𝑁∑︁
𝑘=1

𝜌𝑘(𝑥, 0) · 𝑓𝑘(𝑠𝑘(𝑥, 0)) d𝑥, (3.12)

and that 𝑓𝑘 can be taken as 𝑓0𝑘(𝑠𝑘) = min[𝑠𝑘 − 𝑠0𝑘, 0]. This leads us to examine entropy pairs (𝑈𝑓
𝐼 , 𝐹 𝑓

𝐼 ) of the
form:

(𝑈𝑓
𝐼 , 𝐹 𝑓

𝐼 ) =

(︃
−

𝑁∑︁
𝑘=1

𝜌𝑘𝑓𝑘, −
𝑁∑︁

𝑘=1

𝜌𝑘𝑢𝑓𝑘

)︃
, 𝑓𝑘 = 𝑓𝑘(𝑠𝑘), (3.13)

and attempt to show that those with 𝑓𝑘 defined as the convolution (3.11) are valid entropy pairs. The second
option is a minimum entropy principle involving the specific entropy of the gas mixture:

𝑠(𝑥, 𝑡) ≥ 𝑠0 = Ess inf
|𝑥|≤𝑅+𝑡·𝑞max

𝑠(𝑥, 0).

In the same vein, this is obtained if we can show that entropy solutions satisfy the inequality:∫︁
|𝑥|≤𝑅

𝜌(𝑥, 𝑡) · 𝑓(𝑠(𝑥, 𝑡)) d𝑥 ≥
∫︁
|𝑥|≤𝑅+𝑡·𝑞max

𝜌(𝑥, 0) · 𝑓(𝑠(𝑥, 0)) d𝑥, (3.14)

and that 𝑓 can be taken as 𝑓0(𝑠) = min[𝑠− 𝑠0, 0]. This leads us to examine entropy pairs (𝑈𝑓
II, 𝐹

𝑓
II) of the form:

(𝑈𝑓
II, 𝐹

𝑓
II) = (−𝜌𝑓(𝑠),−𝜌𝑢𝑓(𝑠)), (3.15)

and attempt show that those with 𝑓 defined as the convolution (3.11) are valid entropy pairs.
These two families are investigated in the next section. The admissibility conditions will take the form of

constraints of the first and second derivatives of 𝑓𝑘 (first case) and 𝑓 (second case). If the first and second
derivatives are allowed to be strictly positive and negative, respectively, then the convolution (3.11) qualifies
and a minimum entropy principle follows.

4. Entropy functions in the multicomponent case

For each candidate family of entropy functions, we must check for conservation and convexity with respect
to the conservative variables. For a candidate entropy 𝑈𝑓 , convexity is equivalent to the positive definiteness of
its Hessian matrix G:

G =
𝜕2𝑈𝑓

𝜕u2
=

𝜕v𝑓

𝜕u
, v𝑓 =

(︂
𝜕𝑈𝑓

𝜕u

)︂⊤
.

v𝑓 is the vector of entropy variables associated with the candidate entropy.
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4.1. Candidate I

Conservation

Equation (1.2) with (𝑈, 𝐹 ) = (𝑈𝑓
𝐼 , 𝐹 𝑓

𝐼 ) holds if and only if
∑︀𝑁

𝑘=1 𝑌𝑘𝑓𝑘 satisfies a transport equation. We have:

𝑑

(︃
𝑁∑︁

𝑘=1

𝑌𝑘𝑓𝑘

)︃
=

𝑁∑︁
𝑘=1

𝑌𝑘 d𝑓𝑘 +
𝑁∑︁

𝑘=1

𝑓𝑘 d𝑌𝑘

=
𝑁∑︁

𝑘=1

𝑌𝑘𝑓 ′𝑘 d𝑠𝑘 +
𝑁∑︁

𝑘=1

𝑓𝑘 d𝑌𝑘

=
𝑁∑︁

𝑘=1

𝑌𝑘𝑓 ′𝑘

(︂
𝑐𝑣𝑘

𝑇
d𝑇 − 𝑟𝑘

𝜌𝑘
d𝜌𝑘

)︂
+

𝑁∑︁
𝑘=1

𝑓𝑘 d𝑌𝑘

=

(︃
𝑁∑︁

𝑘=1

𝑌𝑘𝑓 ′𝑘𝑐𝑣𝑘

)︃
d𝑇

𝑇
− 1

𝜌

𝑁∑︁
𝑘=1

𝑓 ′𝑘𝑟𝑘 d𝜌𝑘 +
𝑁∑︁

𝑘=1

𝑓𝑘 d𝑌𝑘

=

(︃
𝑁∑︁

𝑘=1

𝑌𝑘𝑓 ′𝑘𝑐𝑣𝑘

)︃
d𝑇

𝑇
−

(︃
𝑁∑︁

𝑘=1

𝑓 ′𝑘𝑌𝑘𝑟𝑘

)︃
d𝜌

𝜌
+

𝑁∑︁
𝑘=1

(𝑓𝑘 − 𝑟𝑘𝑓 ′𝑘) d𝑌𝑘.

From the differential relation:

d𝑒 =
𝑁∑︁

𝑘=1

d𝑌𝑘𝑒𝑘 +
𝑁∑︁

𝑘=1

𝑌𝑘𝑐𝑣𝑘 d𝑇 =
𝑁∑︁

𝑘=1

d𝑌𝑘𝑒𝑘 + 𝑐𝑣 d𝑇,

we obtain the following equation for temperature:

𝐷𝑡𝑇 = − 𝑝

𝜌𝑐𝑣
𝜕𝑥𝑢 =

𝑝

𝜌2𝑐𝑣
𝐷𝑡𝜌. (4.1)

Using equations (2.1) and (4.1), we can show that 𝑈𝑓
𝐼 is conserved if and only if:

1
𝑇

(︃
𝑁∑︁

𝑘=1

𝑌𝑘𝑓 ′𝑘𝑐𝑣𝑘

)︃
𝐷𝑡𝑇 −

1
𝜌

(︃
𝑁∑︁

𝑘=1

𝑓 ′𝑘𝑌𝑘𝑟𝑘

)︃
𝐷𝑡𝜌 = 0 ⇔ 𝑝

𝜌𝑇

(︃∑︀𝑁
𝑘=1 𝑌𝑘𝑓 ′𝑘𝑐𝑣𝑘∑︀𝑁

𝑘=1 𝑌𝑘𝑐𝑣𝑘

)︃
−

(︃
𝑁∑︁

𝑘=1

𝑓 ′𝑘𝑌𝑘𝑟𝑘

)︃
= 0. (4.2)

Using the ideal gas law, this condition rewrites:∑︀𝑁
𝑘=1 𝜌𝑘𝑐𝑣𝑘𝑓 ′𝑘∑︀𝑁

𝑘=1 𝜌𝑘𝑐𝑣𝑘

=
∑︀𝑁

𝑘=1 𝜌𝑘𝑟𝑘𝑓 ′𝑘∑︀𝑁
𝑘=1 𝜌𝑘𝑟𝑘

· (4.3)

Convexity

We have:
𝜕𝑠𝑘

𝜕𝜌𝑘
= − 𝑟𝑘

𝜌𝑘
,

𝜕𝑠𝑘

𝜕𝑇
=

𝑐𝑣𝑘

𝑇
,

𝜕𝑓𝑘

𝜕𝜌𝑘
= − 𝑟𝑘

𝜌𝑘
𝑓 ′𝑘,

𝜕𝑓𝑘

𝜕𝑇
=

𝑐𝑣𝑘

𝑇
𝑓 ′𝑘·

Therefore
𝜕𝑈𝑓

𝐼

𝜕𝑍
=
[︁
−𝑓1 + 𝑟1𝑓

′
1 . . . −𝑓𝑁 + 𝑟𝑁𝑓 ′𝑁 0 − 1

𝑇

(︁∑︀𝑁
𝑘=1 𝜌𝑘𝑐𝑣𝑘𝑓 ′𝑘

)︁]︁
,

and the entropy variables (chain rule) are given by:

v𝑓
𝐼 =

[︀
−𝑓1 + 𝑟1𝑓

′
1 − 𝛽 𝑘−𝑒1

𝑇 . . . −𝑓𝑁 + 𝑟𝑁𝑓 ′𝑁 − 𝛽 𝑘−𝑒𝑁

𝑇 𝛽 𝑢
𝑇 −𝛽 1

𝑇

]︀⊤
, 𝛽 =

∑︀𝑁
𝑘=1 𝜌𝑘𝑐𝑣𝑘𝑓 ′𝑘∑︀𝑁

𝑘=1 𝜌𝑘𝑐𝑣𝑘

·
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For simplicity, let’s assume calorically perfect gases (𝑐𝑣𝑘 and 𝑐𝑝𝑘 constants) and drop the standard formation
constants. To proceed with the Hessian calculation we need the following:

𝜕𝛽

𝜕𝜌𝑘
=

𝑐𝑣𝑘

𝜌𝑐𝑣
(𝑓 ′𝑘 − 𝑟𝑘𝑓 ′′𝑘 − 𝛽),

𝜕𝛽

𝜕𝑇
=

𝜂

𝑇
, 𝜂 =

∑︀𝑁
𝑘=1 𝜌𝑘𝑐2

𝑣𝑘𝑓 ′′𝑘∑︀𝑁
𝑘=1 𝜌𝑘𝑐𝑣𝑘

·

Denote 𝜉𝑘 = 𝑓 ′𝑘 − 𝑟𝑘𝑓 ′′𝑘 and v𝑓
𝐼 = [𝑣𝑓

1,1 . . . 𝑣𝑓
1,𝑁 𝑣𝑓

2 𝑣𝑓
3 ]⊤. The gradients of the last component are given by:

𝜕𝑣𝑓
3

𝜕𝜌𝑘
= − 1

𝑇

𝑐𝑣𝑘

𝜌𝑐𝑣
(𝜉𝑘 − 𝛽),

𝜕𝑣𝑓
3

𝜕𝑢
= 0,

𝜕𝑣𝑓
3

𝜕𝑇
=

𝛽 − 𝜂

𝑇 2
·

The gradients of the before-last component are given by:

𝜕𝑣𝑓
2

𝜕𝜌𝑘
=

𝑢

𝑇

𝑐𝑣𝑘

𝜌𝑐𝑣
(𝜉𝑘 − 𝛽),

𝜕𝑣𝑓
2

𝜕𝑢
=

𝛽

𝑇
,

𝜕𝑣𝑓
2

𝜕𝑇
= 𝑢

𝜂 − 𝛽

𝑇 2
·

The gradient of the 𝑙-th component is given by:

𝜕𝑣𝑓
1,𝑙

𝜕𝜌𝑘
= 𝛿𝑘𝑙

𝑟𝑘

𝜌𝑘
𝜉𝑘 −

(︂
𝑘

𝑇
− 𝑐𝑣𝑙

)︂
𝑐𝑣𝑘

𝜌𝑐𝑣
(𝜉𝑘 − 𝛽),

𝜕𝑣𝑓
1,𝑙

𝜕𝑢
= −𝑢

𝛽

𝑇
,

𝜕𝑣𝑓
1,𝑙

𝜕𝑇
= −𝑐𝑣𝑙

𝑇
𝜉𝑙 +

(𝛽 − 𝜂)𝑘
𝑇 2

+ 𝑐𝑣𝑙
𝜂

𝑇
·

For two species, we have:

𝜕v𝑓
𝐼

𝜕𝑍
=

⎡⎢⎢⎢⎣
𝑟1
𝜌1

𝜉1 − ( 𝑘
𝑇 − 𝑐𝑣1) 𝑐𝑣1

𝜌𝑐𝑣
(𝜉1 − 𝛽) −( 𝑘

𝑇 − 𝑐𝑣1) 𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) −𝑢 𝛽
𝑇 − 𝑐𝑣1

𝑇 𝜉1 + (𝛽−𝜂)𝑘
𝑇 2 + 𝑐𝑣1

𝜂
𝑇

−( 𝑘
𝑇 − 𝑐𝑣2) 𝑐𝑣1

𝜌𝑐𝑣
(𝜉1 − 𝛽) 𝑟2

𝜌2
𝜉2 − ( 𝑘

𝑇 − 𝑐𝑣2) 𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) −𝑢 𝛽
𝑇 − 𝑐𝑣2

𝑇 𝜉2 + (𝛽−𝜂)𝑘
𝑇 2 + 𝑐𝑣2

𝜂
𝑇

𝑢
𝑇

𝑐𝑣1
𝜌𝑐𝑣

(𝜉1 − 𝛽) 𝑢
𝑇

𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) 𝛽
𝑇 𝑢𝜂−𝛽

𝑇 2

− 1
𝑇

𝑐𝑣1
𝜌𝑐𝑣

(𝜉1 − 𝛽) − 1
𝑇

𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) 0 𝛽−𝜂
𝑇 2

⎤⎥⎥⎥⎦ .

(4.4)
If 𝑓(𝑠) = 𝑠 then 𝛽 = 1, 𝜂 = 0 and 𝜉𝑘 = 1 and equation (4.4) does simplify to equation (2.11). The chain rule
gives for the Hessian G𝐼 :

G𝐼 =
𝜕v𝑓

𝐼

𝜕𝑍

(︂
𝜕u
𝜕𝑍

)︂−1

.

G𝐼 is dense. We establish conditions on 𝑓𝑘 so that 𝐺 is positive definite by looking at the congruent matrix:

H𝐼 =
(︂

𝜕u
𝜕𝑍

)︂⊤
G𝐼

(︂
𝜕u
𝜕𝑍

)︂
=
(︂

𝜕u
𝜕𝑍

)︂⊤
𝜕v𝑓

𝐼

𝜕𝑍
·

H𝐼 is given by:

H𝐼 =

⎡⎢⎣1 0 𝑢 𝑐𝑣1𝑇 + 𝑘
0 1 𝑢 𝑐𝑣𝑁𝑇 + 𝑘
0 0 𝜌 𝜌𝑢
0 0 0 𝜌𝑐𝑣

⎤⎥⎦

×

⎡⎢⎢⎢⎣
𝑟1
𝜌1

𝜉1 − ( 𝑘
𝑇 − 𝑐𝑣1) 𝑐𝑣1

𝜌𝑐𝑣
(𝜉1 − 𝛽) −( 𝑘

𝑇 − 𝑐𝑣1) 𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) −𝑢 𝛽
𝑇 − 𝑐𝑣1

𝑇 𝜉1 + (𝛽−𝜂)𝑘
𝑇 2 + 𝑐𝑣1

𝜂
𝑇

−( 𝑘
𝑇 − 𝑐𝑣2) 𝑐𝑣1

𝜌𝑐𝑣
(𝜉1 − 𝛽) 𝑟2

𝜌2
𝜉2 − ( 𝑘

𝑇 − 𝑐𝑣2) 𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) −𝑢 𝛽
𝑇 − 𝑐𝑣2

𝑇 𝜉2 + (𝛽−𝜂)𝑘
𝑇 2 + 𝑐𝑣2

𝜂
𝑇

𝑢
𝑇

𝑐𝑣1
𝜌𝑐𝑣

(𝜉1 − 𝛽) 𝑢
𝑇

𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) 𝛽
𝑇 𝑢𝜂−𝛽

𝑇 2

− 1
𝑇

𝑐𝑣1
𝜌𝑐𝑣

(𝜉1 − 𝛽) − 1
𝑇

𝑐𝑣2
𝜌𝑐𝑣

(𝜉2 − 𝛽) 0 𝛽−𝜂
𝑇 2

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎣
𝑟1
𝜌1

𝜉1 0 0 − 𝑐𝑣1
𝑇 (𝜉1 − 𝛽)

0 𝑟2
𝜌2

𝜉2 0 − 𝑐𝑣2
𝑇 (𝜉2 − 𝛽)

0 0 𝜌𝛽
𝑇 0

− 𝑐𝑣1
𝑇 (𝜉1 − 𝛽) − 𝑐𝑣2

𝑇 (𝜉2 − 𝛽) 0 𝜌𝑐𝑣
𝛽−𝜂
𝑇 2

⎤⎥⎥⎦ .
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H𝐼 is positive definite if and only if the determinants of the major blocks of H𝐼 are all positive (from Harten
[16]). For the first three major blocks, this is equivalent to the requirement that 𝜉1 > 0, 𝜉2 > 0 and 𝛽 > 0 are
positive. Last:

det(H𝐼) =
𝜌𝛽

𝑇 3
𝑟1𝑟2

(︂
𝜌𝑐𝑣(𝛽 − 𝜂)

𝜉1𝜉2

𝜌1𝜌2
− 𝑐𝑣1

𝛾1 − 1
(𝜉1 − 𝛽)2

𝜉2

𝜌2
− 𝑐𝑣2

𝛾2 − 1
(𝜉2 − 𝛽)2

𝜉1

𝜌1

)︂
=

𝜌𝛽𝑟1𝑟2𝜉1𝜉2

𝜌1𝜌2𝑇 3

(︂
𝜌𝑐𝑣(𝛽 − 𝜂)− 𝜌1𝑐𝑣1

𝛾1 − 1
(𝜉1 − 𝛽)2

𝜉1
− 𝜌2𝑐𝑣2

𝛾2 − 1
(𝜉2 − 𝛽)2

𝜉2

)︂
=

𝜌𝛽𝑟1𝑟2𝜉1𝜉2

𝜌1𝜌2𝑇 3

(︂
𝜌1𝑐𝑣1

(︂
(𝛽 − 𝜂)− 1

𝛾1 − 1
(𝜉1 − 𝛽)2

𝜉1

)︂
+ 𝜌2𝑐𝑣2

(︂
(𝛽 − 𝜂)− 1

𝛾2 − 1
(𝜉2 − 𝛽)2

𝜉2

)︂)︂
=

𝜌𝛽𝑟1𝑟2𝜉1𝜉2

𝜌1𝜌2𝑇 3

(︂
𝜌1𝑐𝑣1

𝜉1(𝛾1 − 1)
(︀
(𝛽 − 𝜂)𝜉1(𝛾1 − 1)− (𝜉1 − 𝛽)2

)︀
+

𝜌2𝑐𝑣2

𝜉2(𝛾2 − 1)
(︀
(𝛽 − 𝜂)𝜉2(𝛾2 − 1)− (𝜉2 − 𝛽)2

)︀)︂
=

𝜌𝛽𝑟1𝑟2𝜉1𝜉2

𝜌1𝜌2𝑇 3

(︂
𝜌1𝑐𝑣1

𝜉1(𝛾1 − 1)
Δ1 +

𝜌2𝑐𝑣2

𝜉2(𝛾2 − 1)
Δ2

)︂
,

where Δ𝑘 = (𝛽 − 𝜂)𝜉𝑘(𝛾𝑘 − 1)− (𝜉𝑘 − 𝛽)2. For an arbitrary number of species:

H𝐼 =

⎡⎢⎢⎢⎢⎢⎣
𝑟1
𝜌1

𝜉1 0 − 𝑐𝑣1
𝑇 (𝜉1 − 𝛽)

. . .
...

...
𝑟𝑁

𝜌𝑁
𝜉𝑁 0 − 𝑐𝑣𝑁

𝑇 (𝜉𝑁 − 𝛽)
0 . . . 0 𝜌𝛽

𝑇 0
− 𝑐𝑣1

𝑇 (𝜉1 − 𝛽) . . . − 𝑐𝑣𝑁

𝑇 (𝜉𝑁 − 𝛽) 0 𝜌𝑐𝑣
𝛽−𝜂
𝑇 2

⎤⎥⎥⎥⎥⎥⎦ , (4.5)

and one can easily show that:

det(H𝐼) =
𝜌𝛽

𝑇 3

(︃
𝑁∏︁

𝑘=1

𝑟𝑘𝜉𝑘

𝜌𝑘

)︃(︃
𝑁∑︁

𝑘=1

𝜌𝑘𝑐𝑣𝑘

𝜉𝑘(𝛾𝑘 − 1)
Δ𝑘

)︃
. (4.6)

Overall, 𝑈𝑓 is an admissible entropy for the multicomponent Euler equations if and only if:∑︀𝑁
𝑘=1 𝜌𝑘𝑐𝑣𝑘𝑓 ′𝑘∑︀𝑁

𝑘=1 𝜌𝑘𝑐𝑣𝑘

=
∑︀𝑁

𝑘=1 𝜌𝑘𝑟𝑘𝑓 ′𝑘∑︀𝑁
𝑘=1 𝜌𝑘𝑟𝑘

, 𝜉𝑘 > 0, 𝛽 > 0,

𝑁∑︁
𝑘=1

𝜌𝑘𝑐𝑣𝑘

𝜉𝑘(𝛾𝑘 − 1)
Δ𝑘 > 0. (4.7)

While the sufficient conditions 𝑓 ′𝑘 > 0, 𝑓 ′′𝑘 < 0 for a minimum entropy principle are compatible with 𝜉𝑘 > 0 and
𝛽 > 0, it is not clear whether they are compatible with the last inequality of (4.7) (Δ𝑘 being the difference of
two positive terms). Additionally, the equality constraint (4.3) which came from the requirement of conservation
does not seem to offer any option other than 𝑓 ′𝑘 constant. Note that if 𝑓 ′𝑘 > 0, 𝑓 ′′𝑘 < 0 were to violate any of
the conditions derived here, it would only mean that we cannot prove a minimum entropy principle with the
approach exposed in Section 3.1. Disproving a minimum entropy principle would require a counterexample.

For the compressible Euler equations, H𝐼 simplifies to:

H𝐼 =

⎡⎣ 𝑟
𝜌𝜉 0 − 𝑐𝑣

𝑇 (𝜉 − 𝛽)
0 𝜌𝛽

𝑇 0
− 𝑐𝑣

𝑇 (𝜉 − 𝛽) 0 𝜌𝑐𝑣
𝛽−𝜂
𝑇 2

⎤⎦ , 𝜉 = 𝑓 ′ − 𝑟𝑓 ′′, 𝛽 = 𝑓 ′, 𝜂 = 𝑐𝑣𝑓 ′′.

The determinants of the three major blocks are:

det(𝐻11) =
𝑟

𝜌
𝜉, det(𝐻22) =

𝜌

𝑇
𝛽, det(H𝐼) =

𝜌𝑟𝑐𝑣𝛽

𝑇 3(𝛾 − 1)
(︀
(𝛽 − 𝜂)𝜉(𝛾 − 1)− (𝜉 − 𝛽)2

)︀
.



MINIMUM ENTROPY PRINCIPLE 383

Using (𝛾 − 1)(𝛽 − 𝜂) = (𝛾 − 1)𝑓 ′ − 𝑟𝑓 ′′ and 𝜉 − 𝛽 = −𝑟𝑓 ′′, the determinant simplifies to:

det(H𝐼) =
𝜌𝑟𝑐𝑣𝛽2

𝑇 3
(𝑓 ′ − 𝑐𝑝𝑓

′′) .

The necessary conditions for H𝐼 to be positive definite are then:

𝑓 ′ − 𝑟𝑓 ′′ > 0, 𝑓 ′ > 0, 𝑓 ′ − 𝑐𝑝𝑓
′′ > 0. (4.8)

Since 𝑓 ′ > 0, the first and third inequality of (4.8) can be rewritten as:

𝑓 ′′

𝑓 ′
<

1
𝑟
,

𝑓 ′′

𝑓 ′
<

1
𝑐𝑝
·

Since 𝑐𝑝 > 𝑟, the first inequality is implied by the second. Therefore, the necessary conditions (4.8) simplify to:

𝑓 ′ > 0, 𝑓 ′ − 𝑐𝑝𝑓
′′ > 0. (4.9)

These are the well-known conditions (3.4) for the Euler equations (note that the function 𝑓 in this section and
the function ℎ in Section 3.1 are related by 𝑓(𝑠) = ℎ(𝑠/𝑐𝑣)). The conditions (4.7) are therefore consistent with
Harten’s in the Euler case.

4.2. Candidate II

Conservation

Multiplying the transport equation for the specific entropy (2.3) with 𝑓 ′ leads to a transport equation for
𝑓(𝑠). Conservation of 𝑈𝑓

II with the entropy flux 𝐹 𝑓
II then follows from the total mass conservation equation.

Convexity

We have:
𝜕𝑌𝑗

𝜕𝜌𝑘
=

𝛿𝑗𝑘

𝜌
− 𝜌𝑗

𝜌2
,

𝜕𝑠

𝜕𝜌𝑘
=

1
𝜌
(𝑠𝑘 − 𝑟𝑘 − 𝑠),

𝜕𝑠

𝜕𝑇
=

𝑐𝑣

𝑇
·

This gives:
𝜕𝑈𝑓

II

𝜕𝑍
=
[︀
𝑓 ′(−𝑠1 + 𝑟1 + 𝑠)− 𝑓 . . . 𝑓 ′(−𝑠𝑁 + 𝑟𝑁 + 𝑠)− 𝑓 0 −𝜌𝑐𝑣

𝑇 𝑓 ′
]︀
, (4.10)

and the entropy variables:

v𝑓
II =

[︀
𝑓 ′ 𝑔1−𝑘

𝑇 + 𝑓 ′𝑠− 𝑓 . . . 𝑓 ′ 𝑔𝑁−𝑘
𝑇 + 𝑓 ′𝑠− 𝑓 𝑓 ′ 𝑢

𝑇 −𝑓 ′ 1
𝑇

]︀⊤
= 𝑓 ′v + (𝑓 ′𝑠− 𝑓)

[︀
1 · · · 1 0 0

]︀⊤
. (4.11)

Again, the conditions for convexity are established by looking at the congruent matrix HII defined by:

HII =
(︂

𝜕u
𝜕𝑍

)︂⊤
GII

(︂
𝜕u
𝜕𝑍

)︂
=
(︂

𝜕u
𝜕𝑍

)︂⊤
𝜕v𝑓

II

𝜕𝑍
·

We have:

𝜕v𝑓
II

𝜕𝑍
= 𝑓 ′

𝜕v
𝜕𝑍

+
𝑓 ′′

𝜌

⎡⎢⎢⎢⎢⎣
(𝑔1 − 𝑘)/𝑇 + 𝑠

...
(𝑔𝑁 − 𝑘)/𝑇 + 𝑠

𝑢/𝑇
−1/𝑇

⎤⎥⎥⎥⎥⎦ [︀𝑠1 − 𝑟1 − 𝑠 . . . 𝑠𝑁 − 𝑟𝑁 − 𝑠 0 𝜌𝑐𝑣

𝑇

]︀
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and

(︂
𝜕u
𝜕𝑍

)︂⊤
⎡⎢⎢⎢⎢⎣

(𝑔1 − 𝑘)/𝑇 + 𝑠
...

(𝑔𝑁 − 𝑘)/𝑇 + 𝑠
𝑢/𝑇
−1/𝑇

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−𝑠1 + 𝑟1 + 𝑠

...
−𝑠𝑁 + 𝑟𝑁 + 𝑠

0
−𝜌𝑐𝑣

𝑇

⎤⎥⎥⎥⎥⎦ ,

(︂
𝜕u
𝜕𝑍

)︂⊤
𝜕v
𝜕𝑍

=

⎡⎢⎢⎢⎢⎣
𝑟1/𝜌1 0 0 0

. . .
...

...
0 𝑟𝑁/𝜌𝑁 0 0
0 . . . 0 𝜌/𝑇 0
0 . . . 0 0 𝜌𝑐𝑣/𝑇 2

⎤⎥⎥⎥⎥⎦ .

Therefore:

HII = 𝑓 ′

⎡⎢⎢⎢⎢⎣
𝑟1/𝜌1 0 0 0

. . .
...

...
0 𝑟𝑁/𝜌𝑁 0 0
0 . . . 0 𝜌/𝑇 0
0 . . . 0 0 𝜌𝑐𝑣/𝑇 2

⎤⎥⎥⎥⎥⎦− 𝑓 ′′

𝜌

⎡⎢⎢⎢⎢⎣
𝑅1

...
𝑅𝑁

0
−𝜌𝑐𝑣

𝑇

⎤⎥⎥⎥⎥⎦ [︀𝑅1 . . . 𝑅𝑁 0 −𝜌𝑐𝑣

𝑇

]︀
, (4.12)

where 𝑅𝑖 = −𝑠𝑖 + 𝑟𝑖 + 𝑠. We recover Harten’s conditions in the compressible Euler case. At this point, we
immediately note that if 𝑓 ′ > 0, 𝑓 ′′ < 0 then HII is positive definite (as the sum of a positive definite matrix
and a positive semi-definite matrix). Therefore a minimum entropy principle for the mixture’s specific entropy
holds.

Continuing on the characterization of convexity, HII writes:

HII =
𝑓 ′

𝜌

⎡⎢⎢⎢⎢⎣
𝑟1/𝑌1 0 0 0

. . .
...

...
0 𝑟𝑁/𝑌𝑁 0 0
0 . . . 0 𝜌2/𝑇 0
0 . . . 0 0 𝜌2𝑐𝑣/𝑇 2

⎤⎥⎥⎥⎥⎦− 𝑓 ′′

𝜌

⎡⎢⎢⎢⎢⎢⎣
𝑅2

1 𝑅1𝑅𝑁 0 −𝜌𝑐𝑣

𝑇 𝑅1

. . .
...

...
𝑅1𝑅𝑁 𝑅2

𝑁 0 −𝜌𝑐𝑣

𝑇 𝑅𝑁

0 . . . 0 0 0
−𝜌𝑐𝑣

𝑇 𝑅1 . . . −𝜌𝑐𝑣

𝑇 𝑅𝑁 0 𝜌2𝑐2
𝑣

𝑇 2

⎤⎥⎥⎥⎥⎥⎦ .

Let 𝑟𝑖 = 𝑟𝑖/𝑌𝑖 and 𝜂 = 𝑓 ′ − 𝑐𝑣𝑓 ′′, for two species we have:

HII =
1
𝜌

⎡⎢⎢⎣
𝑓 ′𝑟1 − 𝑓 ′′𝑅2

1 −𝑅1𝑅2𝑓
′′ 0 𝜌𝑐𝑣

𝑇 𝑅1𝑓
′′

−𝑅1𝑅2𝑓
′′ 𝑓 ′𝑟2 − 𝑓 ′′𝑅2

2 0 𝜌𝑐𝑣

𝑇 𝑅2𝑓
′′

0 0 𝜌2𝑓 ′/𝑇 0
𝜌𝑐𝑣

𝑇 𝑅1𝑓
′′ 𝜌𝑐𝑣

𝑇 𝑅2𝑓
′′ 0 𝜌2𝑐𝑣

𝑇 2 𝜂

⎤⎥⎥⎦ .

The determinants of the first three major blocks of H are:

𝐻11 = 𝑟1

(︂
𝑓 ′ − 𝑓 ′′

𝑅2
1

𝑟1

)︂
, 𝐻22 = 𝑟1𝑟2𝑓

′
(︂

𝑓 ′ − 𝑓 ′′
(︂

𝑅2
1

𝑟1
+

𝑅2
2

𝑟2

)︂)︂
, 𝐻33 =

𝜌2𝑓 ′

𝑇
𝐻22. (4.13)

Last:

det(𝜌HII) =
𝜌2𝑓 ′

𝑇

⃒⃒⃒⃒
⃒⃒𝑓
′𝑟1 − 𝑓 ′′𝑅2

1 −𝑅1𝑅2𝑓
′′ 𝜌𝑐𝑣

𝑇 𝑅1𝑓
′′

−𝑅1𝑅2𝑓
′′ 𝑓 ′𝑟2 − 𝑓 ′′𝑅2

2
𝜌𝑐𝑣

𝑇 𝑅2𝑓
′′

𝜌𝑐𝑣

𝑇 𝑅1𝑓
′′ 𝜌𝑐𝑣

𝑇 𝑅2𝑓
′′ 𝜌2𝑐𝑣

𝑇 2 𝜂

⃒⃒⃒⃒
⃒⃒

=
𝜌4𝑐𝑣𝑓 ′

𝑇 3

⃒⃒⃒⃒
⃒⃒𝑓 ′𝑟1 − 𝑓 ′′𝑅2

1 −𝑅1𝑅2𝑓
′′ 𝑅1𝑓

′′

−𝑅1𝑅2𝑓
′′ 𝑓 ′𝑟2 − 𝑓 ′′𝑅2

2 𝑅2𝑓
′′

𝑐𝑣𝑅1𝑓
′′ 𝑐𝑣𝑅2𝑓

′′ 𝜂

⃒⃒⃒⃒
⃒⃒

=
𝜌4𝑐𝑣𝑓 ′

𝑇 3

(︂
𝜂𝐻22 − 𝑐𝑣𝑅2

2𝑓
′′
⃒⃒⃒⃒
𝑓 ′𝑟1 − 𝑓 ′′𝑅2

1 −𝑅1𝑓
′′

𝑅1 1

⃒⃒⃒⃒
− 𝑐𝑣𝑅2

1𝑓
′′
⃒⃒⃒⃒
𝑓 ′𝑟2 − 𝑓 ′′𝑅2

2 −𝑅2𝑓
′′

𝑅2 1

⃒⃒⃒⃒)︂
=

𝜌4𝑐𝑣𝑓 ′

𝑇 3

(︀
𝜂𝐻22 − 𝑐𝑣𝑓 ′′𝑓 ′(𝑅2

2𝑟1 + 𝑅2
1𝑟2

)︀)︀
=

𝜌4𝑐𝑣(𝑓 ′)2

𝑇 3
𝑟1𝑟2

(︂
𝜂𝑓 ′ − (𝜂 + 𝑐𝑣)𝑓 ′′

(︂
𝑅2

1

𝑟1
+

𝑅2
2

𝑟2

)︂)︂
.
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We obtain conditions on 𝑓 involving terms of the form 𝑓 ′ − 𝛼𝑓 ′′, but unlike in the Euler case, 𝛼 is not a
constant. In Section 4.1, the simple structure of the mapped Hessian H𝐼 , given by equation (4.5), allowed us
to easily derive the necessary and sufficient conditions (4.7) for convexity for an arbitrary number of species.
Nevertheless, we were not able to conclude on a minimum entropy principle on the specific entropy of each
species. Here, the mapped Hessian HII, given by equation (4.12), is mostly dense, which complicates the task
of establishing convexity conditions for an arbitrary number of species. However, we know from equation (4.12)
that 𝑓 ′ > 0 and 𝑓 ′′ < 0 are sufficient conditions for admissibility, independently of the number of species, which
is enough to conclude on a minimum entropy principle on the mixture’s specific entropy.

5. Numerical schemes satisfying a minimum entropy principle

In this section, we review schemes which, by virtue of satisfying all entropy inequalities under some assump-
tions, satisfy a minimum entropy principle for the compressible multicomponent Euler equations.

We only discuss first-order schemes in one dimension. Extensions to high-order and multiple dimensions
(including unstructured grids) can be found in [11, 13, 14, 22, 29]. These schemes are typically constructed as
composite convex combinations of one-dimensional first-order updates. Since entropies are convex functions,
any entropy inequality satisfied by the baseline one-dimensional first-order update will be satisfied by the whole
scheme as well.

5.1. Godunov-type schemes [15]

Let w(𝑥/𝑡;u𝐿,u𝑅) be the solution of the Riemann problem:

𝜕𝑡u + 𝜕𝑥f = 0, u(𝑥, 0) =
{︂

u𝐿, 𝑥 < 0,
u𝑅, 𝑥 > 0,

(5.1)

where u𝐿 and u𝑅 are constant states. Let 𝑎𝐿 and 𝑎𝑅 be the smallest and largest signal velocities. Then w
satisfies:

w(𝑥/𝑡;u𝐿,u𝑅) =
{︂

u𝐿, 𝑥/𝑡 ≤ 𝑎𝐿

u𝑅, 𝑥/𝑡 ≥ 𝑎𝑅
. (5.2)

In the Godunov scheme [8], each discontinuity in the discrete field u𝑛
𝑖 gives rise to a local Riemann problem

(5.2). If 𝜆|𝑎max| < 1/2, where 𝑎max is the largest signal speed in the domain, then there is no interaction between
neighboring Riemann problems and the exact solution w𝑛+1(𝑥) at the next time instant writes:

w𝑛+1(𝑥) = w((𝑥− 𝑥𝑖+ 1
2
)/Δ𝑡;u𝑛

𝑖 ,u𝑛
𝑖+1), for |𝑥− 𝑥𝑖+ 1

2
| ≤ Δ𝑥/2,

where 𝑥𝑖+ 1
2

is the position of the interface between cells 𝑖 and 𝑖 + 1. The Godunov scheme is obtained by
averaging w𝑛+1 in each cell:

u𝑛+1
𝑖 =

1
Δ𝑥

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

w𝑛+1(𝑥) d𝑥

=
1

Δ𝑥

∫︁ Δ𝑥/2

0

w(𝑥/Δ𝑡;u𝑛
𝑖−1,u

𝑛
𝑖 ) d𝑥 +

1
Δ𝑥

∫︁ 0

−Δ𝑥/2

w(𝑥/Δ𝑡;u𝑛
𝑖 ,u𝑛

𝑖+1) d𝑥.

This update can be rewritten in conservative form:

u𝑛+1
𝑖 = u𝑛

𝑖 − 𝜆
(︀
f(ŵ𝑖+ 1

2
)− f(ŵ𝑖− 1

2
)
)︀
, ŵ𝑖+ 1

2
= w(0;u𝑛

𝑖 ,u𝑛
𝑖+1),

with 𝜆 = Δ𝑡/Δ𝑥. An important assumption from there [11,15] is that the exact Riemann solution is an entropy
solution. This implies, for all entropies:

1
Δ𝑥

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑈(w𝑛+1(𝑥)) d𝑥 ≤ 𝑈(u𝑛
𝑖 )− 𝜆

(︀
𝐹 (ŵ𝑖+ 1

2
)− 𝐹 (ŵ𝑖− 1

2
)
)︀
.
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With Jensen’s inequality:

𝑈

⎛⎝ 1
Δ𝑥

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

w𝑛+1(𝑥) d𝑥

⎞⎠ ≤ 1
Δ𝑥

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑈(w𝑛+1(𝑥)) d𝑥,

it follows that the Godunov scheme satisfies:

𝑈(u𝑛+1
𝑖 ) ≤ 𝑈(u𝑛

𝑖 )− 𝜆
(︀
𝐹 (ŵ𝑖+ 1

2
)− 𝐹 (ŵ𝑖− 1

2
)
)︀
. (5.3)

This shows that the Godunov scheme inherits, by construction, all the entropy inequalities that the exact
Riemann solution satisfies. This result also applies to schemes based on approximate Riemann solutions provided
that they remain consistent with the integral forms of the conservation law and the entropy inequality (see
Thm. 3.1 in [15]). The bottom line is that full knowledge of the Riemann solution is not necessary. For instance,
the HLL scheme [15] qualifies if the maximum right and left wave speeds are correctly estimated (from above).

The Godunov scheme satisfies a sharper version of (3.10). Taking 𝑈 = −𝜌𝑓0(𝑠) with 𝑠0 =
min[𝑠(u𝑛

𝑖−1), 𝑠(u𝑛
𝑖 ), 𝑠(u𝑛

𝑖+1)] in (5.3), and using the fact that the exact solution w is an entropy solution
satisfying (3.8), it follows that the Godunov scheme satisfies:

𝑠(u𝑛+1
𝑖 ) ≥ min[𝑠(u𝑛

𝑖−1), 𝑠(u𝑛
𝑖 ), 𝑠(u𝑛

𝑖+1)]. (5.4)

For the compressible Euler equations, procedures for calculating the exact solution (see Toro [28]) and es-
timating the maximum wave speed (see Guermond and Popov [12]) are available and can be extended to the
multicomponent case (a follow-up to [12] is proposed by Frolov in [5], Sect. 4.5).

It is unclear whether the assumption that the exact Riemann solution satisfies all entropy inequalities is
valid. To the best of the authors’ knowledge, there is no proof that Harten’s entropies [16] are the only entropies
of the compressible Euler equations. The same can be said about the entropies that we explored in Section 4
for the multicomponent case. This precludes a direct proof where entropy inequalities are evaluated for the
exact Riemann solution. Another way of proving this would be to show that the exact Riemann solution can
be written as a limit solution to the regularized system (1.5) or any other sytem which implies all entropy
inequalities. As far as the minimum entropy principle is concerned, showing that the exact Riemann solution
satisfies all entropy inequalities associated with Harten’s family or with the convolution entropies of Section 3.1
would be enough.

5.2. The Lax–Friedrichs scheme

The Lax–Friedrichs (LxF) scheme writes:

u𝑛+1
𝑖 =

u𝑛
𝑖−1 + u𝑛

𝑖+1

2
+

𝜆

2
(︀
f(u𝑛

𝑖−1)− f(u𝑛
𝑖+1)

)︀
.

Harten (private communication in [25], Sect. 4) observed that if the time step is small enough, the LxF scheme
coincides with the Godunov scheme over a staggered grid. The solution thus inherits the entropy inequalities
that the Riemann solution satisfies:

𝑈(u𝑛+1
𝑖 ) ≤

𝑈(u𝑛
𝑖−1) + 𝑈(u𝑛

𝑖+1)
2

+
𝜆

2
(︀
𝐹 (u𝑛

𝑖−1)− 𝐹 (u𝑛
𝑖+1)

)︀
. (5.5)

As in Section 3.1, inequality (5.5) with 𝑈 = −𝜌𝑓0(𝑠) and 𝑠0 = min[𝑠(u𝑛
𝑖−1), 𝑠(u𝑛

𝑖+1)] leads to a minimum
entropy principle:

𝑠(u𝑛+1
𝑖 ) ≥ min[𝑠(u𝑛

𝑖−1), 𝑠(u𝑛
𝑖+1)], (5.6)

that is sharper than (3.10).
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On the other hand, Lax [21] proved, without invoking Riemann solutions, that the LxF scheme can be made
to satisfy (5.5) for any given entropy pair. We recall his proof here, as it will help us address a point brought
up during the review process.

Denote u = u𝑛+1
𝑖 , v = u𝑛

𝑖−1 and w = u𝑛
𝑖+1. The LxF scheme writes:

u(v, w) =
v + w

2
+

𝜆

2
(f(v)− f(w)),

and the entropy inequality (5.5) can be studied by looking at the sign of the difference function:

Δ𝒮(v, w) =
𝑈(v) + 𝑈(w)

2
+

𝜆

2
(𝐹 (v)− 𝐹 (w))− 𝑈(u).

Lax [21] used a homotopy approach. Let 𝑠 ∈ [0 1], and define:

v(𝑠) = 𝑠v + (1− 𝑠)w, u(𝑠) = u(v(𝑠), w).

Since v(1) = v, v(0) = w, and Δ𝒮(w, w) = 0, the fundamental theorem of calculus gives:

Δ𝒮(v, w) = Δ𝒮(v(1), w)−Δ𝒮(v(0), w) =
∫︁ 1

0

d
d𝑠

(Δ𝒮(v(𝑠), w)) d𝑠. (5.7)

u and v satisfy:
dv

d𝑠
= v−w,

du

d𝑠
=

v−w

2
+

𝜆

2
𝐴(v)(v−w) =

1
2

(𝐼 + 𝜆𝐴(v)) (v−w),

where 𝐴 is the flux Jacobian. Using chain rules and the constitutive relation (1.3), the integrand in equation
(5.7) writes:

d
d𝑠

(Δ𝒮(v(𝑠), w)) =
1
2

(︂
d𝑈

du
(v)− d𝑈

du
(u)
)︂

(𝐼 + 𝜆𝐴(v)) (v−w).

Again, let 𝑟 ∈ [0 1], and define:

w(𝑟, 𝑠) = 𝑟v(𝑠) + (1− 𝑟)w = 𝑟𝑠v + (1− 𝑟𝑠)w, u(𝑟, 𝑠) = u(v(𝑠), w(𝑟)).

Since u(1, 𝑠) = v(𝑠), u(0, 𝑠) = u(𝑠), the fundamental theorem of calculus gives:

d𝑈

du
(v)− d𝑈

du
(u) =

∫︁ 1

0

d
d𝑟

(︂
d𝑈

du
(u)
)︂

d𝑟 =
∫︁ 1

0

(︂
du

d𝑟

)︂𝑇

𝐺(u) d𝑟, (5.8)

where 𝐺 is the entropy Hessian. With:

du

d𝑟
=

𝑠

2
(𝐼 − 𝜆𝐴(w)) (v−w)

and equations (5.7) and (5.8), the difference function Δ𝒮 can finally be rewritten as:

Δ𝒮(v, w) =
∫︁ 1

0

∫︁ 1

0

𝑠

4
(︀(︀

𝐼 − 𝜆𝐴(w)
)︀
(v−w)

)︀𝑇
𝐺(u)

(︀(︀
𝐼 + 𝜆𝐴(v)

)︀
(v−w)

)︀
d𝑠 d𝑟.

= ⟨z, z⟩𝐺 − 𝜆(⟨𝐴(w)z, z⟩𝐺 + ⟨z, 𝐴(v)z⟩𝐺)− 𝜆2⟨𝐴(w)z, 𝐴(v)z⟩𝐺.

where z = (v−w) and ⟨ , ⟩𝐺 is the inner product defined by:

⟨a, b⟩𝐺 =
∫︁ 1

0

∫︁ 1

0

𝑠

4
a𝑇 𝐺(𝑢)b d𝑠 d𝑟.
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Since 𝐺 is symmetric positive definite, ⟨z, z⟩𝐺 > 0 and one can expect the entropy inequality (5.5) to be met if
𝜆 is small enough. Within the vector space spanned by (𝑟, 𝑠), let 𝑐 be the maximum matrix norm of 𝐴, 𝑚 be
the minimum eigenvalue of 𝐺 and 𝑀 be the maximum eigenvalue of 𝐺. Then, for ||v|| ≠ 0, if 𝜆 satisfies:

𝑚− 2𝑐𝜆𝑀 − 𝑐2𝜆2𝑀 > 0 ⇔ 𝜆𝑐 <
√︀

1 + (𝑚/𝑀)− 1 (5.9)

then the inequality (5.5) is met. Since 𝑈 is strictly convex, (𝑚/𝑀) > 0 and the right-hand side of (5.9) is
strictly positive. In other words, for any entropy 𝑈 , there will always exist a time step small enough such that
the condition (5.9) is met.

While Lax’s proof does not invoke Riemann solutions, it does not completely support the statement [26] that
the LxF scheme can be made to satisfy all entropy inequalities. The factor 𝑚/𝑀 in (5.9) is strictly positive, but
also depends on the entropy at hand. The fact that we do not know all the entropies of a hyperbolic system in
general leaves open the possibility that 𝑚/𝑀 can be arbitrarily small. One needs to show that there exists a
strictly positive and entropy-independent lower bound 𝐾 on 𝑚/𝑀 , so that under the condition:

𝜆𝑐 <
√

1 + 𝐾 − 1 (5.10)

the LxF scheme will effectively satisfy all entropy inequalities. As far as the minimum entropy principle is
concerned however, we recalled in Section 3.1 that not all entropy inequalities need to be satisfied.

6. Conclusions

We proved a minimum entropy principle for entropy solutions to the multicomponent compressible Euler
equations, extending Tadmor’s result [26]. The proof was carried out in one dimension but easily follows in
two and three dimensions (the characterization of the two families in Section 4 is independent of the number
of dimensions). This principle was proven for the mixture’s specific entropy only. It would be interesting to
establish whether this also holds for the specific entropy of each species. We assumed a mixture of thermally
perfect gases governed by an ideal gas law. The methodology outlined here and in the work of Harten et al.
[17], which extended Harten’s characterization [16] to gases with an arbitrary equation of state, should provide
helpful guidelines for those interested in taking this result farther.

While numerical schemes consistent with the entropy condition (1.7) for a given pair (𝑈, 𝐹 ) can be constructed
[27] (for the compressible multicomponent Euler equations, Gouasmi et al. [9] constructed one such scheme for
the pair (−𝜌𝑠,−𝜌𝑢𝑠)), designing numerical schemes which lead to discrete entropy solutions is more challenging.
A common trait of such schemes [11, 15, 22, 29] is that they take root in the notion of a Riemann problem and
the existence of solutions satisfying all entropy inequalities.

While the minimum entropy principle is only a property of entropy solutions, it provides valuable information
about the local behavior of the physical solution. Limiting procedures for high-order schemes have been designed
around this property [13,14,22,29] for the Euler equations and may henceforth prove useful in multicomponent
flow simulations.

Finally, we emphasize that the present work is not meant to provide a comprehensive review of the sym-
metrizability of the multicomponent system. We refer the interested reader to Giovangigli and Matuszewski
[7] for instance. The investigation of entropy functions carried out in Section 4 was driven by the prospect of
proving a minimum entropy principle. Harten’s pioneering work [16] had broader motivations.
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